Deep Anomaly Detection using Geometric Transformations (FAU Winter Semester 2024/2025)
Date:
This presentation occurred for the “Intro to Control and Machine Learning” master’s course at Frierich-Alexander Universität Erlangen-Nürnberg.
Repository:
Experiments
- New image transformations
- quantile histogram equalization
- color jitter
- zoom / crop
- Alternative normality scoring, via Shannon Entropy
- Spatial Localization of Features
- Averaging activation maps of relevant convolutional or activation layers
- Grad-CAM: weighting 2D-activations with the average gradient
- Uncertainty Analysis
- Monte Carlo Dropout
Presentation
Report - additional experiments
References
[1] I. Golan and R. El-Yaniv, in Advances in Neural Information Processing Sys-
tems, edited by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (Curran Associates, Inc., 2018), vol. 31.