

Deep Anomaly Detection Using Geometric Transformations (Golan and El-Yaniv 2018)

Final presentation - Advanced ML for Anomaly Detection WiSe 24/25

Pedro Blöss Braga¹

¹Friedrich-Alexander Universität Erlangen-Nürnberg, Department Mathematik

January 29, 2025

1. Introduction

- 2. Image Transformations
- 3. Normality Score
- 4. Feature Localization
- **5. Uncertainty Estimation**
- 6. Results and Conclusion

1. Introduction

- 2. Image Transformations
- 3. Normality Score
- 4. Feature Localization
- 5. Uncertainty Estimation
- 6. Results and Conclusion

CatsVsDogs AUROC

using Geometric Transformations";Benchmark across classical datasets and models;

• (Golan and El-Yaniv 2018) "Deep Anomaly Detection

• Overall ROC AUC improvement;

Figure: Performance benchmark with 200 Epochs.

Performance across various datasets

Figure: Performance benchmark with 200 Epochs.

FAU Pedro Blöss Braga

Original Framework - Training

Figure: Illustration of the training structure on (Golan and El-Yaniv 2018).

FAU Pedro Blöss Braga

Original Framework - Inference

Figure: Illustration of the inference structure on (Golan and El-Yaniv 2018).

(Golan and El-Yaniv 2018) utilizes a wide residual network (Zagoruyko 2016), involving:

- Around 53 layers,
- Convolutional Layers spatial filtering,
- Activation layers nonlinearity,
- Pooling layers resizing,
- Batch normalization.

Brainstorming: possible experiments and extensions

- Image transformations
 - Try new transformations
- Normality score
 - Try new scores, with higher performance or computationally faster
- Uncertainty analysis

- Image transformations
 - Sensitivity analysis
 - Weight better transformations
- Hybrid models
 - Reconstruction (autoencoder) + Classification

1. Introduction

- 2. Image Transformations
- 3. Normality Score
- 4. Feature Localization
- 5. Uncertainty Estimation
- 6. Results and Conclusion

Given a set of transformations $T = \{T_0, \ldots, T_{k-1}\}$, where for each 1 < i < k-1,

$$T_i: \mathcal{X} \to \mathcal{X} \tag{1}$$

and $T_0(x) = x$ is the identity transformation. The self labeled set S_T is defined by:

$$S_{\mathcal{T}} := \{ (T_j(x), j) : x \in S, T_j \in \mathcal{T} \}$$
(2)

So for any image $x \in S$, the label of the transformed image $T_j(x)$ is j.

FAU Pedro Blöss Braga

Expanding the transformation set

Additional transformations were included:

- Zooming
- Random Crop
- Color jitter random changes (brightness, contrast and saturation)
- Histogram equalization (

$$T = \left\{ T_{\text{old}} \circ T_s^{\text{zoom}} \circ T_b^{\text{crop}} \circ T_b^{\text{jitter}} \circ T_b^{\text{hist eq}} : b \in \{T, F\}, s \in \{1.0, 1.3\}, \right\}$$

$$|T_{old}| = \underbrace{2}_{\text{flip}} \cdot \underbrace{3}_{\text{tx}} \cdot \underbrace{3}_{\text{ty}} \cdot \underbrace{4}_{\text{rotate}} = 72$$

Flip: False, tx: 0, ty: 0, k: 0 Zoom: 1.0, Crop: None Color Jitter: False, Histogram Eq: False

Flip: False, tx: 0, ty: 0, k: 0 Zoom: 1.3, Crop: None Color Jitter: False, Histogram Eq: False

Flip: True, tx: 0, ty: 0, k: 0 Zoom: 1.0, Crop: None Color Jitter: False, Histogram Eq: False

Flip: False, tx: 0, ty: 0, k: 0 Zoom: 1.0, Crop: (30, 30) Color Jitter: False, Histogram Eq: False

Flip: False, tx: 0, ty: 0, k: 3 Zoom: 1.0, Crop: None Color Jitter: False, Histogram Eq: False

Flip: False, tx: 0, ty: 0, k: 0 Zoom: 1.0, Crop: None Color Jitter: True, Histogram Eq: False

Flip: False, tx: 16, ty: 16, k: 0 Zoom: 1.0, Crop: None Color Jitter: False, Histogram Eq: False

Flip: False, tx: 0, ty: 0, k: 0 Zoom: 1.0, Crop: None Color Jitter: False, Histogram Eq: True (Q: 0.7)

Figure: Example with additional transformations (2nd row).

Quantile Histogram Equalization

By adding a flexibility parameter Q, the histogram equalization normalized cdf was interpolated to the range [0, Q], possibly minimizing the effects of equalization.

A default value of Q = 0.7 was fixed.

- **1. Introduction**
- 2. Image Transformations
- 3. Normality Score
- 4. Feature Localization
- **5. Uncertainty Estimation**
- 6. Results and Conclusion

Given a set of transformations $\mathcal{T} = \{T_0, \ldots, T_{k-1}\}$, and assuming a *k*-class model f_{θ} trained on a self-labeled set $S_{\mathcal{T}}$. Let $y(x) := \operatorname{softmax}(f_{\theta}(x))$.

Each conditional distribution is approximated by $y(T_i(x))|T_i \sim \text{Dir}(\alpha_i), \alpha_i \in \mathbb{R}^k_+, x \sim p_X(x), i \sim \text{Uni}(0, k - 1)$, and $p_X(x)$ is the real data probability distribution of "normal" samples.

The normality score of an image x is then:

$$n_S(x) = \sum_{i=0}^{k-1} (\tilde{\alpha_i} - 1) \cdot \log y(T_i(x))_j$$
(3)

Normality score: new approach

FAU

(Taha and Hadi 2019) (Bereziński, Jasiul, and Szpyrka 2015)

The previous normality score relied on a Dirichlet score, which requires a maximum likelihood estimation (MLE) of parameters $\tilde{\alpha}_i$.

A new approach is proposed, without the need of MLE of parameters, via an entropy score H, as follows.

$$H(p) = -\sum_{i=1}^{N} p_i \log(p_i)$$
(4)

• Computationally cheaper (4.8x faster).

- **1. Introduction**
- 2. Image Transformations
- 3. Normality Score
- 4. Feature Localization
- 5. Uncertainty Estimation
- 6. Results and Conclusion

Analyzing layers activations - Early features

Search for most salient features, one can notice high activation related to brightness, or the leash, on early features.

Average Convolutional Layer Activation

Aiming to recognize general patterns on a subset of N images $\{x_i\}_{i=1,...,N}$, the average activation map was extracted, for convolutional and activation layers, yielding $\overline{A}_k = \frac{1}{N} \sum_{i=1}^N A_k(x_i)$.

By setting a threshold τ , one can construct a mask of regions of higher importance.

 $\operatorname{High} \operatorname{Imp}(k) = \{ \overline{A}_k(i,j) : \overline{A}_k(i,j) \ge \tau \}$ (5)

The results show that boarders and corners had large importance, as well as the contour of the center.

Layer Activation analysis

Figure: Illustration of the average activation map scheme.

FAU Pedro Blöss Braga

By weighting 2D-activations with the average gradient, the region of largest importance is highlighted (Selvaraju et al. 2020). Let $A^k \in \mathbb{R}^{H \times W}$ be the activation map for the *k*-th final convolutional layer of the CNN, and y^c be the score for class *c*. The gradient $\frac{\partial y^c}{\partial A_{i,j}^k}$ measures importance of spatial locations (i, j). A global importance weight α_k^c representing how much the filter *k* contributes to class *c* is

$$\alpha_k^c = \frac{1}{H \times W} \sum_{i=1}^H \sum_{j=1}^W \frac{\partial y^c}{\partial A_{i,j}^k}$$
(6)

The feature maps A^k are combined with weights α_k^c , constructing the heatmap for class c:

$$L^{c}_{\text{Grad-CAM}} = \text{ReLU}\left(\sum_{k} \alpha^{c}_{k} A^{k}\right)$$
(7)

FAU Pedro Blöss Braga

Grad-CAM: Results

Grad-CAM: Image 21 (Pred: 0)

Grad-CAM: Image 23 (Pred: 2)

Figure: Grad-CAM examples: original image and rotated image.

- **1. Introduction**
- 2. Image Transformations
- 3. Normality Score
- 4. Feature Localization
- **5. Uncertainty Estimation**
- 6. Results and Conclusion

(Gal and Ghahramani 2016)

Given input x and a NN $f(x; \theta)$, MC dropout combines the **dropout regularization** and a **monte** carlo sampling, estimating a distribution of predictions $p(y|x; \theta)$ over labels y.

$$\hat{p}(y|x) \approx \frac{1}{N} \sum_{i=1}^{N} \hat{y}_i, \quad \hat{y}_i = f_D(x; \tilde{\theta}_i), \quad \tilde{\theta}_t \sim \mathsf{Dropout}(\theta)$$
(8)

The predictive uncertainty is then $\operatorname{Var}[\hat{y}] = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - \mathbb{E}(\hat{y}))^2$.

Goal: estimate the uncertainty σ_t^2 of a transformation prediction. High uncertainty and low confidence in the correct transformation indicate anomalous behaviour.

Uncertainty estimation example

Figure: Example of model predictions and MC Dropout uncertainty estimation, with 10 epochs, 80 original training instances, and 50 MC passes.

FAU Pedro Blöss Braga

- **1. Introduction**
- 2. Image Transformations
- 3. Normality Score
- 4. Feature Localization
- 5. Uncertainty Estimation
- 6. Results and Conclusion

Results: alternative transformations and score ("mini" experiment)

Figure: Small-scale experiment.

FAU Pedro Blöss Braga

Results: alternative transformations and score (larger experiment)

Figure: Results increasing the experiment scale.

FAU Pedro Blöss Braga

- Potential improvements:
 - New transformations: especially Zoom with Entropy score and Quantile Histogram Equalization with Dirichlet score.
 - Shannon Entropy score.
- Image borders and corners showed high relevance for the geometric transformation detection model.
- **Uncertainty estimation** introduced an additional layer for ensuring model confidence.
- Limitations, and further work:
 - Larger experiments: Training on larger samples, and with more Epochs,
 - More Monte Carlo steps for the uncertainty analysis,
 - Testing on different datasets,
 - Hybrid approaches (reconstruction-based).

References I

Bereziński, P., B. Jasiul, and M. Szpyrka (2015). "An entropy-based network anomaly detection method". In: *Entropy* 17.4, pp. 2367–2408.

- Gal, Y. and Z. Ghahramani (2016). "Dropout as a bayesian approximation: Representing model uncertainty in deep learning". In: *international conference on machine learning*. PMLR, pp. 1050–1059.
- Golan, I. and R. El-Yaniv (2018). "Deep Anomaly Detection Using Geometric Transformations". In: Advances in Neural Information Processing Systems. Ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. Vol. 31. Curran Associates, Inc. URL:

https://proceedings.neurips.cc/paper_files/paper/2018/file/5e62d03aec0d17facfc5355dd90d441c-Paper.pdf.

Selvaraju, R. R., M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra (2020). "Grad-CAM: visual explanations from deep networks via gradient-based localization". In: *International journal of computer vision* 128, pp. 336–359.
Taha, A. and A. S. Hadi (2019). "Anomaly detection methods for categorical data: A review". In: *ACM Computing Surveys*

(CSUR) 52.2, pp. 1–35.

Zagoruyko, S. (2016). "Wide residual networks". In: arXiv preprint arXiv:1605.07146.