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Intro

• (Golan and El-Yaniv 2018) "Deep Anomaly Detection
using Geometric Transformations";

• Benchmark across classical datasets and models;
• Overall ROC AUC improvement;

Figure: Performance benchmark with 200 Epochs.
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Performance across various datasets

Figure: Performance benchmark with 200 Epochs.
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Original Framework - Training

Figure: Illustration of the training structure on (Golan and El-Yaniv 2018).
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Original Framework - Inference

Figure: Illustration of the inference structure on (Golan and El-Yaniv 2018).
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Model

(Golan and El-Yaniv 2018) utilizes a wide residual network (Zagoruyko 2016), involving:
• Around 53 layers,
• Convolutional Layers - spatial filtering,
• Activation layers - nonlinearity,
• Pooling layers - resizing,
• Batch normalization.
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Brainstorming: possible experiments and
extensions

• Image transformations
◦ Try new transformations

• Normality score
◦ Try new scores, with higher performance or

computationally faster
• Uncertainty analysis

• Image transformations
◦ Sensitivity analysis
◦ Weight better transformations

• Hybrid models
◦ Reconstruction (autoencoder) + Classification
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Framework Overview: Self-Labeling

Given a set of transformations T = {T0, . . . , Tk−1}, where for each 1 < i < k − 1,

Ti : X → X (1)

and T0(x) = x is the identity transformation.
The self labeled set ST is defined by:

ST := {(Tj(x), j) : x ∈ S, Tj ∈ T } (2)

So for any image x ∈ S, the label of the transformed image Tj(x) is j.
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Expanding the transformation set

Additional transformations
were included:
• Zooming
• Random Crop
• Color jitter - random changes

(brightness, contrast and
saturation)

• Histogram equalization (

T =
{

Told ◦ T zoom
s ◦ T crop

b ◦ T jitter
b ◦ T hist eq

b :

b ∈ {T, F}, s ∈ {1.0, 1.3},

}

|Told| = 2︸︷︷︸
flip
Y/N

· 3︸︷︷︸
tx

(0,−m,m)

· 3︸︷︷︸
ty

(0,−m,m)

· 4︸︷︷︸
rotate

(0,1,2,3)

= 72 Figure: Example with additional transformations (2nd row).
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Quantile Histogram Equalization

By adding a flexibility parameter Q, the histogram
equalization normalized cdf was interpolated to
the range [0, Q], possibly minimizing the effects of
equalization.

A default value of Q = 0.7 was fixed.

FAU Pedro Blöss Braga
Deep Anomaly Detection Using Geometric Transformations (Golan and El-Yaniv 2018) January 29, 2025 13/30



1. Introduction

2. Image Transformations

3. Normality Score

4. Feature Localization

5. Uncertainty Estimation

6. Results and Conclusion



Dirichlet normality score

Given a set of transformations T = {T0, . . . , Tk−1}, and assuming a k-class model fθ trained on a
self-labeled set ST . Let y(x) := softmax(fθ(x)).

Each conditional distribution is approximated by y(Ti(x))|Ti ∼ Dir(αi), αi ∈ Rk
+, x ∼ pX(x),

i ∼ Uni(0, k − 1), and pX(x) is the real data probability distribution of "normal" samples.

The normality score of an image x is then:

nS(x) =
k−1∑
i=0

(α̃i − 1) · log y(Ti(x))j (3)
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Normality score: new approach
(Taha and Hadi 2019) (Bereziński, Jasiul, and Szpyrka 2015)

The previous normality score relied on a Dirichlet score, which requires a maximum likelihood
estimation (MLE) of parameters α̃i.

A new approach is proposed, without the need of MLE of parameters, via an entropy score H ,
as follows.

H(p) = −
N∑

i=1
pi log(pi) (4)

• Computationally cheaper (4.8x faster).
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Analyzing layers activations - Early features

Search for most salient features, one can notice high activation related to brightness, or the leash, on early features.
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Average Convolutional Layer Activation

Aiming to recognize general patterns on a subset
of N images {xi}i=1,...,N , the average activation
map was extracted, for convolutional and
activation layers, yielding Ak = 1

N

∑N
i=1 Ak(xi).

By setting a threshold τ , one can construct a
mask of regions of higher importance.

High Imp(k) = {Ak(i, j) : Ak(i, j) ≥ τ} (5)

The results show that boarders and corners had
large importance, as well as the contour of the
center.
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Layer Activation analysis

Figure: Illustration of the average activation map scheme.
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Grad-CAM: Visual model explainability

By weighting 2D-activations with the average gradient, the region of largest importance is
highlighted (Selvaraju et al. 2020).
Let Ak ∈ RH×W be the activation map for the k-th final convolutional layer of the CNN, and yc be the
score for class c. The gradient ∂yc

∂Ak
i,j

measures importance of spatial locations (i, j).
A global importance weight αc

k representing how much the filter k contributes to class c is

αc
k = 1

H × W

H∑
i=1

W∑
j=1

∂yc

∂Ak
i,j

(6)

The feature maps Ak are combined with weights αc
k, constructing the heatmap for class c:

Lc
Grad-CAM = ReLU

(∑
k

αc
kAk

)
(7)
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Grad-CAM: Results

Figure: Grad-CAM examples: original image and rotated image.
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Uncertainty estimation: Monte Carlo Dropout
(Gal and Ghahramani 2016)

Given input x and a NN f (x; θ), MC dropout combines the dropout regularization and a monte
carlo sampling, estimating a distribution of predictions p(y|x; θ) over labels y.

p̂(y|x) ≈ 1
N

N∑
i=1

ŷi, ŷi = fD(x; θ̃i), θ̃t ∼ Dropout(θ) (8)

The predictive uncertainty is then Var[ŷ] = 1
N

∑N
i=1(ŷi − E(ŷ))2.

Goal: estimate the uncertainty σ2
t of a transformation prediction. High uncertainty and low confidence

in the correct transformation indicate anomalous behaviour.
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Uncertainty estimation example

Figure: Example of model predictions and MC Dropout uncertainty estimation, with 10 epochs, 80 original training instances, and 50 MC passes.
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Results: alternative transformations and score
("mini" experiment)

Figure: Small-scale experiment.
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Results: alternative transformations and score
(larger experiment)

Figure: Results increasing the experiment scale.
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Conclusion

• Potential improvements:
◦ New transformations: especially Zoom with Entropy score and Quantile Histogram Equalization with

Dirichlet score.
◦ Shannon Entropy score.

• Image borders and corners showed high relevance for the geometric transformation detection model.
• Uncertainty estimation introduced an additional layer for ensuring model confidence.

• Limitations, and further work:
◦ Larger experiments: Training on larger samples, and with more Epochs,
◦ More Monte Carlo steps for the uncertainty analysis,
◦ Testing on different datasets,
◦ Hybrid approaches (reconstruction-based).
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