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Introduction

Heat Equation
• Models how heat spreads in a medium over time, with applications in engineering, environmental science, and other

fields.
• Efficient solutions are critical for applications including insulation design and thermal management.

What are PINNs?
• Physics-Informed Neural Networks (PINNs) embed physical laws (e.g., PDEs) into neural network training.
• Leverage the known physics to constrain the learning process, improving accuracy with limited data.

How PINNs Solve the Heat Equation
• Incorporate the heat equation into the loss function.
• Minimize data loss and physics residuals to ensure consistency with physical laws and observed data.

Relationship to Control Theory
• Residuals act as feedback, guiding training like error correction in control systems.
• The loss function serves as a control mechanism to enforce physical constraints, boundary, and initial conditions.
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Heat Equation

The Heat Equation
∂u

∂t
− α∆u = f (x, y, t) (1)

Explanation of Variables
• u(x, t): Temperature at position x and time t.
• ∂u

∂t : Rate of change of temperature with respect to time.

• ∆u = ∂2u
∂x2 + ∂2u

∂y2 : The Laplacian, representing how temperature diffuses through space.
• f (x, y, t): external heat source
• α: Thermal diffusivity, indicating how quickly heat spreads.

Physical Interpretation
• The heat equation models how thermal energy moves through a material, which is important for designing efficient

thermal management systems.
• It can also be used to predict temperature distribution over time in various physical systems.
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PINNs: Scheme

Figure: Illustration by (Meng, Li, Zhang, and Karniadakis 2020)
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Approximation to the Heat Equation

We consider the 2D heat equation with an external source f (x, y, t) in a spartial domain Ω = (0, LX) × (0, Ly) and the
time interval t ∈ [0, T ]:

∂u

∂t
− α∆u = f (x, y, t), (x, y, t) ∈ Ω × (0, T ),

where ∆u = ∂2u
∂x2 + ∂2u

∂y2 .

Boundary Conditions (homogeneous for simplicity)

u(x, 0, t) = 0, u(x, Ly, t) = 0,

u(0, y, t) = 0, u(Lx, y, t) = 0 ∀t ∈ [0, T ]

Initial Condition specifies the temperature distribution at t = 0:

u(x, y, 0) = u0(x, y) ∀(x, y) ∈ Ω,

where u0(x, y) is the given initial temperature distribution.
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Designing the Loss function

Generally, a PINN loss function for approximating the heat equation can be designed by a
composition of the terms:

• PDE Loss: LPDE =
∑NΩ

i=1
(

∂u
∂t − α∆u − f (x, y, t)

)2
with λPDE = 1

NΩ

• Boundary Conditions Loss: LBC =
∑N∂Ω

i=1 (uθ(x, y, t) − gBC(x, y, t))2 with λBC = 1
N∂Ω

• Initial Conditions Loss: LIC =
∑N0

i=1 (uθ(x, y, 0) − gic(x, y))2 with λIC = 1
N0

So the Total Loss is:

L = λPDELPDE + λBCLBC + λICLIC (2)

with weights λPDE, λBC, λIC.
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Analysis: Existence and Uniqueness of
solutions

Given that the Heat Equation is a linear and parabolic PDE, the Lax-Milgram theorem can be applied to guarantee the
existence and uniqueness of solutions in H1

0(Ω).

Proof.
Given the problem −∆u = g, with g = f − ut, the weak formulation yiels (after integrating by parts)∫

Ω

∇u · ∇vdx =
∫

Ω

gvdx , ∀v ∈ H1
0(Ω)

Note that the bilinear form a(u, v) =
∫

Ω ∇u · ∇vdx is coercive and continuous, and that the linear functional
L(v) =

∫
Ω gvdx is bounded.

Theorem (Lax-Milgram (Alt 2016))
Let X be a Hilbert space, the bilinear functional a : X × X → R, and the linear functional L : X → R. If ∀u, v ∈ X ,
• (coercivity) a(u, u) ≥ α∥u∥2

X , α > 0
• (continuity) |a(u, v)| ≤ C∥u∥X∥v∥X

• (boundedness) L(v) ≤ M∥v∥X , M > 0
Then, there exists a unique solution u ∈ X to the weak problem a(u, v) = L(v), ∀v ∈ X
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Baseline: Finite-Difference method

We used the Forward Time Centered Space (FCTS) Finite Difference Method (FDM) (Recktenwald 2004) as a
baseline to compare with the PINN results.
This is a general explicit numerical method for PDE solutions, with the following recurrence equation:

u(t, i, j) − u(t − 1, i, j)
α∆t

=u(t − 1, i + 1, j) − 2u(t − 1, i, j) + u(t − 1, i − 1, j)
∆x2

+ u(t − 1, i, j + 1) − 2u(t − 1, i, j) + u(t − 1, i, j − 1)
∆y2
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PINNs convergence

Some factors introduce challenges into the theoretical formulation of PINNs solutions:
• Non-convexity of the NNs loss function;
• Nonlinearity of NNs;

Furthermore, the convergence of PINNs requires functional analysis tools, for example:
• "CONVERGENCE AND ERROR ANALYSIS OF PINNS" (Doumèche, Biau, and Boyer 2023) States that the

convergence depend on Sobolev inequalities.
• "On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs"

(Shin, Darbon, and Karniadakis 2020) shows strong convergence with a Schauder approach adaptation. More
specifically, "Theorem 3.3 shows that neural networks that minimize the Holder regularized empirical losses (3.3)
converge to the unique classical solution to the PDE"
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Simulation Setting

Network: Architecture with three hidden layers
[8, 16, 8], with:
• Input: 3 features (spatial and temporal).
• Active for hidden: tanh better for a

non-linear approximation.

tanh(x) = sinh(x)
cosh(x)

= ex − e−x

ex + e−x

• Output: Scalar value representing heating.
• Training: 1000 epochs, learning rate: 0.001,

optimizer: Adam, Thermal diffusivity: 0.1
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Loss and Notation:
• xb, yb, tb: Boundary points (spatial and temporal).
• ub: True boundary values at these points.
• xi, yi, ti: Interior points of the domain (spatial and temporal).
• u(x, y, t): Neural network’s predicted scalar output (e.g., temperature).
• ∂u

∂t : First-order time derivative of u.
• ∂u

∂x, ∂u
∂y : First-order spatial derivatives of u.

• ∂2u
∂x2 ,

∂2u
∂y2 : Second-order spatial derivatives of u.

• α: Thermal diffusivity constant (or similar parameter).
• x0, y0: Spatial points at the initial time t = 0.
• u0: True initial condition values at t = 0.
• ud: True condition values at a future time t = 1 (true value from finite difference method).
• Nb: Number of boundary points.
• Ni: Number of interior points.
• N0: Number of points at the initial condition and finite difference result.

Total Loss = 1
Nb

Nb∑
j=1

(
u(xj

b, yj
b, tj

b) − uj
b

)2
+ 1

Ni

Ni∑
i=1

(
∂u

∂ti
− α

(
∂2u

∂x2
i

+ ∂2u

∂y2
i

))2

+ 1
N0

N0∑
k=1

(
u(xk

0, yk
0, t = 0) − uk

0
)2 + 1

Nf

Nf∑
m=1

(
u(xm

f , ym
f , tm

f ) − um
FDM

)2
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Result

Boundary Setting: The left boundary is set to 1, while all other boundaries are set to 0.

Finite Difference method result PINN result with tanh activation
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PINNs without the initial condition

When the initial condition is excluded, the approxima-
tion improves compared to when it is included.
• ∥uFDM − uPINN, no IC∥2 = 0.01655
• ∥uFourier − uPINN, no IC∥2 = 0.02175

L = λPDELPDE + λBCLBC + �����XXXXXλICLIC
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Benchmark

Fourier method: Using the Fourier method to simulate the heat equation(same boundary condition as before).

u(x, y, t) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
û(kx, ky, 0) exp

(
−α

(
k2

x + k2
y

)
t
)

ei(kxx+kyy) dkx dky

The detailed simulation settings and mathematical
derivations, which are quite lengthy, have been omit-
ted here to focus on the results. The full details can be
found at https://github.com/Haiyun314/intro-control-ml.
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Testing different Optimizers and learning rates

• Adam showed smoother approximations, and is generally more suitable (adaptative learning).
• SGD requires careful tuning and may introduce irregularities in the heat distribution.
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Conclusions

• Approximation error: The simulation results present reasonable errors compared to baseline models.
• Computational cost

◦ FDM time: 2.79855 s.
◦ Fourier time: 0.08019 s.
◦ PINN time: 62.563114 s.

• Convergence: Several references leverage the convergence of PINNs to PDE problems. (Doumèche, Biau, and
Boyer 2023) (Shin, Darbon, and Karniadakis 2020) (Lorenz, Bacho, and Kutyniok 2024)

• Time dependance: PINNs approximate the entire domain at once, so they do not "evolve" solutions step-by-step like
explicit FDM.

• Advantages of PINNs:
◦ Mesh-free - discretization into a mesh is not required (Cuomo et al. 2022),
◦ Automatic differentiation (Baydin, Pearlmutter, Radul, and Siskind 2018) - eliminating numerical errors,
◦ Handling high-dimensionality data,
◦ Flexibility of boundary conditions and loss.
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