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Deep Anomaly Detection Using Geometric Transformations

Based on the method presented in "Deep Anomaly Detection using Geometric Transformations" (Golan
and El-Yaniv 2018) [1], extensions to the image transformation set and normality score are inspected. A
spatial feature importance analysis is provided analyzing the activation maps and gradients. Small-scale

simulations demonstrate ROCAUC development.

I. Experiments
A. Additional Geometric Transformations
Apart from the 3 sets of transformations in [1], which are
horizontal flip, rotation, and translation, new image trans-
formations were tested: quantile histogram equalization,
cropping, color jitter, and zoom.
B. Spatial localization of features
Extracting the activation map of relevant layers (e.g. con-
volutional and activation) of the trained network enables a
feature localization method. A mask is created filtering high
activations by a threshold.
An intuitive representation of general feature important is
suggested, by averaging activation maps of the last convo-
lutional layers. Results show high activation values in image
borders, corners, and other regions.

FIG. 1: Scheme for the average activation map, and exam-
ples of final layers.

Additionally, applying Grad-CAM [2], visual model explain-
ability is enabled, by weighting 2D-activations with the av-
erage gradient.

FIG. 2: Original image (left); Grad-CAM on flip (middle)
and rotate (right).

C. Normality score
As an alternative to the Dirichlet normality score, an en-
tropy score [3] [4] is introduced via the mapping 1.1, given
probabilities p;.

N
H(p) = —sz' log(p;) (11)
i=1

removing the necessity of a maximum likelihood estimation
of parameters &; via the fixed point iteration method, and
producing higher ROC AUC values.

D. Uncertainty Estimation
Incorporating uncertainty into predictions helps to quan-
tify model confidence and reliability. Monte Carlo Dropout
[5] enables estimation of the posterior predictive distribu-
tion as p(ylx) =~ %Zf\]ﬂ Ui, where §; = fp(x;0;) repre-
sent predictions of a stochastic model fp with parameters
0; ~ Dropout(f), given input . Subsequently, the uncer-
tainty metric Var[j] = + Zf\;l@z — E(9))? is introduced,
to measure the variability in predictions.
Il. Methodology
The experiments were mostly executed with samples of the
"cats-vs-dogs" dataset, given the small number of classes,
and high benchmark performance in [1]. Training was
focused on class 0, with inference in both classes, and
the implementation can be found at https://github.com/
pedroblossbraga/DeepAnomDetecGeomTranst.
I1l.  Results
Receiver Operating Characteristic (ROC) curves

(epochs:30, #Train=100, #test=50)
Dirichlet scores Entropy scores

o

[ A —.

True Positive Rate (TPR)
True Positive Rate (TPR)

0.0 02 04 06 08 10 00 02 04 06 08 10
False Positive Rate (FPR) False Positive Rate (FPR)

=== No new - Dirichlet (ROC AUC: 66.1%) No new - Entropy (ROC AUC: 59.4%)
Hist eq - Dirichlet (ROC AUC: 71.4%) Hist eq - Entropy (ROC AUC: 44.8%)

=== Jitter - Dirichlet (ROC AUC: 62.6%) == == Jitter - Entropy (ROC AUC: 50.9%)
Zoom - Dirichlet (ROC AUC: 62.7%) —- Zoom - Entropy (ROC AUC: 70.1%)

FIG. 3: ROC curve of different experiments, comparing dif-
ferent transformation combinations and normality scores.
"No new" refers to the original set in [1], and the remaining
refers to the original set adding 1 new transformation.

Overall, within Dirichlet scores, Quantile Histogram Equal-
ization (@ = 0.7) demonstrated superior ROCAUC, whereas
within Entropy scores, Zoom surpassed others with a wider
margin. Comparing scores, in a small-scale experiment with
only 10 Epochs entropy scores were preferred. However, by
increasing to 30 epochs 3, there is only improvement with
the zoom transformation. Furthermore, entropy computa-
tion is faster, by a ratio of 4.8 on a test with the original
transformation set.

IV. Conclusion
Additional transformations, especially Zoom and Histogram
Equalization, displays potential performance improvements.
Moreover, the Entropy score 1.1 shows higher ROCAUC,
when Zoom is added, and it is computationally cheaper.
The uncertainty estimation leverages an additional layer of
discrimination for normality. However, tests with much
larger data sets and epochs should be more conclusive.
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