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Convex Optimization for Dynamical Systems
Region of Attraction Computation via Polynomial Optimization

Region of Attraction (ROA) estimation problems yield interesting optimization approaches when con-
sidering polynomial dynamics. In this study, a method presented in [2] is shown, providing an outer
approximation to the ROA, solving a Polynomial Optimization problem, induced by occupation mea-
sures, approximating an initial infinite dimensional problem with a hierarchy of finite dimensional linear
matrix inequalities, with convergence for an arbitrarily large polynomial degree.

I. Introduction

The problem relies on computing the Region of Attraction (ROA) of a target set, on a nonlinear dynamical system.
The domain sets are X,U,XT , respectively for the trajectories, control, and terminal state.

ẋ(t) = f(t, x(t), u(t)) t ∈ [0, T ] (I.1)

where it is considered that each entry is polynomial, i.e., fi ∈ R[t, x, u], i ∈ Z[1,n].
The set of all admissible trajectories starting from x0 is given by:

X (x0) := {x(.) : ∃u(.) ∈ U s.t. ẋ(t) = f(t, x(t), u(t)) a.e., x(0) = x0, x(t) ∈ X,x(T ) ∈ XT ,∀t ∈ [0, T ]} (I.2)

where U denotes the set of all control functions, and x(.) is absolutely continuous. Also, a.e. stands for "almost
everywhere" in a Lebesgue measure or a weak sense.
The defined sets X,U,XT form semialgebraic constraints that restrict state and control input.

x(t) ∈ X := {x ∈ Rn : gXi (x) ≥ 0, i ∈ Z[1,nX ]}, t ∈ [0, T ] (I.3)

u(t) ∈ U := {u ∈ Rm : gUi (u) ≥ 0, i ∈ Z[1,nU ]}, t ∈ [0, T ] (I.4)

where gXi ∈ R[x], gUi ∈ R[x], and the terminal state x(T ) is constrained to lie in the basic semialgebraic set

XT := {x ∈ Rn : gXT
i (x) ≥ 0, i ∈ Z[1,nT ]} ⊂ X, gXT

i ∈ R[x] (I.5)

Definition I.1 (Region of Attraction (ROA) [2]). The Region of Attraction (ROA) of a dynamical system is the set of
all initial states that can be directed to a target set, with an admissible control, while remaining in the state-constraint
set. The ROA is denoted by

X0 = {x0 ∈ X : X (x0) ̸= ∅} (I.6)

A. Assumptions

1. Assumption 1: X, U , and XT are compact. Therefore, the sets are also bounded.

2. Assumption 2: The control system satisfies λ(X0) = λ(X̄0). Thus, the volume of the relaxed region has the
same volume as the ROA measure.

3. Assumption 3: Archimedian semialgebraic sets. Allows us to use quadratic modules (weighted SOS).

Definition I.2 (Quadratic Module [4]). The quadratic module generated by the polynomials g1, . . . , gm is the set

Q(g1, . . . , gm) :=

{
σ0 +

m∑
i=1

giσi : σ0, . . . , σm ∈ Σ[x]

}
(I.7)
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Definition I.3 (Archimedian semialgebraic sets). The Quadratic module Q(g1, . . . , gm) is said to be Archimedean if
∃N ∈ N : N − (x2

1 + . . .+ x2
n) ∈ Q(g1, . . . , gm).

Assumptions 1 and 3 are sufficient conditions to apply Putinar’s theorem [5], and then a Quadratic module can be a
representation of the semialgebraic sets.

Theorem I.4 (Putinar [5]). Suppose the polynomials g1, . . . , gm are such that Q(g1, . . . , gm) is Archimedean. If
f ∈ R[x] is positive on the set K, then f ∈ Q(g1, . . . , gm).

II. Occupation measures

[2] shows that it is possible to compute the ROA by solving a convex linear program (LP), with infinite dimensionality.
However, the infinite dimensional problem can be converted to an equivalent optimization problem, with finite
dimensionality, which is more suitable for numerical simulation.

Definition II.1 (Occupation measure). Given an initial condition x0 and admissible x(.|x0) ∈ X0, with u(.|x0) ∈ U ,
the occupation measure µ(.|x0) is defined by

µ(A×B × C|x0) =

∫ T

0

IA×B×C(t, x(t|x0), u(t|x0))dt, ∀A×B × C ⊂ [0, T ]×X × U (II.1)

where µ(A × B × C|x0) quantifies the amount of time of A ⊂ [0, T ] spent with the trajectory state and control
(x.|x0), u(.|x0)) ∈ B × C ⊂ X × U .

For any measurable function g(t, x, u) we have the property∫ T

0

g(t, x(t|x0), u(t|x0))dt =

∫
[0,T ]×X×U

g(t, x, u)dµ(t, x, u|x0) (II.2)

which relates the measure µ(.|x0) to the trajectory state and control in the given time.
Furthermore, a particularly relevant relation between a measure µ and the function f is the Liouville equation, with
the derivative of the measure in a weak or distributional sense:

∂tµ+ divx(fµ) = 0, µ ∈ M([0, T ]×X) (II.3)

And with a test function, initially with flexible regularity C∞
0 ([0, T ] × X), we integrate with time and space. By

integrating by parts and shifting the derivative to the test function with the first term, and applying the divergence
theorem with the second term:∫ T

0

∫
X

(∂tµ+ divx(fµ))vdxdt =
∫ T

0

∫
X

∂tµ · vdxdt+
∫ T

0

∫
X

div (fµ) · vdxdt (II.4)

= −
∫ T

0

∫
X

µ · ∂tvdxdt−
∫ T

0

∫
X

fµ · ∇vdxdt = 0 (II.5)∫ T

0

∫
X

(∂tv +∇v · f)µdxdt = 0 (II.6)

⇒
∫ T

0

∫
X

(∂tv +∇v · f) dµ(t, x) = 0, ∀v ∈ C∞
0 ([0, T ]×X) (II.7)

We then reformulate II.3 via the Linear Operator L : C1([0, T ]×X) → C([0, T ]×X × U) with

v 7→ Lv :=
∂v

∂t
+∇v · f (II.8)

which has an adjoint L′ : C([0, T ]×X × U)′ → C1([0, T ]×X)′, with

⟨L′ν, v⟩ := ⟨ν,Lv⟩ =
∫
[0,T ]×X×U

Lv(t, x, u)dν(t, x, u)

∀ν ∈ M([0, T ]×X × U) = C([0, T ]×X × U)′, v ∈ C1([0, T ]×X)

(II.9)

Often the adjoint is expressed with L′ν = −∂tν −∇ · fν. Note that the liouville equation II.3 is denoted with the
given adjoint.
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Given a test function v ∈ C1([0, T ]×X),

v(T, x(T |x0)) = v(0, x0) +

∫ T

0

d

dt
v(t, x(t|x0))dt = v(0, x0) +

∫ T

0

Lv(t, x(t|x0), u(t|x0))dt

= v(0, x0) +

∫
[0,T ]×X×U

Lv(t, x, u)dµ(t, x, u|x0) = v(0, x0) + ⟨L′µ(.|x0), v⟩

⇒ v(T, x(T |x0)) = v(0, x0) + ⟨L′µ(.|x0), v⟩

(II.10)

The average occupation measure µ quantifies the average time spent with the given control and state.
By integrating II.10 w.r.t µ0, we obtain∫

XT

v(T, x(T |x0))dµT (x) =

∫
X

v(0, x0)dµ0(x) +

∫
[0,T ]×X×U

Lv(t, x, u)dµ(t, x, u) (II.11)

⟨µT , v(T, .)⟩ = ⟨µ0, v(0, .)⟩+ ⟨µ,Lv⟩ (II.12)

which relate the nonnegative measures µ ≥ 0, µ0 ≥ 0, µT ≥ 0.
We can rewrite II.12 with the Dirac δt measure as ⟨µ0, v(0, .)⟩ = ⟨δ0 ⊗ µ0, v⟩, obtaining

⟨δT ⊗ µT , v⟩ = ⟨δ0 ⊗ µ0, v⟩+ ⟨µ,Lv⟩︸ ︷︷ ︸
⟨L′µ,v⟩

∀v ∈ C1([0, T ]×X) (II.13)

And finally, we obtain the linear operator equation:

δT ⊗ µT = δ0 ⊗ µ0 + L′µ (II.14)

Relaxation can be obtained by assuming suitable changes:

→ ẋ(t) ∈ f(t, x(t), U) (II.15)
→ ẋ(t) ∈ convf(t, x(t), U) (II.16)

which can be shown to satisfy Liouville’s equation II.14.
Then, the set of admissible trajectories and the ROA are defined with

X̄ (x0) := {x(.) : ∃u(.) ∈ U s.t. ẋ(t) ∈ convf(t, x(t), U) a.e.,
x(0) = x0 ∈ x(t) ∈ X,x(T ) ∈ XT ,∀t ∈ [0, T ]}

(II.17)

X̄0 = {x0 ∈ X : X̄ (x0) ̸= ∅} (II.18)

III. ROA via Optimization

Computing the ROA then can be determined with the optimization problem below

q∗ = sup λ(spt µ0)

s.t. δT ⊗ µT = δ0 ⊗ µ0 + L′µ

µ ≥ 0, µ0 ≥ 0, µT ≥ 0

spt µ ⊂ [0, T ]×X × U

spt µ0 ⊂ X, spt µT ⊂ XT

(III.1)

Lemma III.1 (ROA computation via III.1). It can be shown that the volume in III.1 equals to the volume of the
ROA, i.e., q∗ = λ(X0).

Proof. By definition, for x0 ∈ X0, there is an admissible trajectory in X (x0), thus, for µ0 with spt µ0 ⊂ X0, there
exist µ, µT satisfying the constraints.
With Assumption 2, λ(X0) = λ(X̄0), then q∗ ≥ λ(X0) = λ(X̄0).
Supposing by contradition (µ0, µ, µT ) satisfy the constraints and λ(spt µ0 \ X̄0) > 0. However, no trajectory from
spt µ0 \ X̄0 can be admissible, then λ(spt µ0 \ X̄0) = 0 ⇒ λ(spt µ0) ≤ λ(X̄0). Then, q∗ ≤ λ(X̄0) = λ(X0).
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It is possible to reformulate III.1, by using that for any feasible µ0:

λ(spt µ0) ≤ λ(X0) (III.2)
µ0 ≤ λ ⇒ µ0(X) = µ0(spt µ0) ≤ λ(spt µ0) ≤ λ(X0) (III.3)

∴ µ0(X) ≤ λ(X0) (III.4)

Also, by definition µ0(X) ≥ λ(X0). Thus: p∗ := µ0(X) = λ(X0), and we obtain:

p∗ = sup µ0(X)

s.t. δT ⊗ µT = δ0 ⊗ µ0 + L′µ

µ ≥ 0, λ ≥ µ0 ≥ 0, µT ≥ 0

spt µ ⊂ [0, T ]×X × U

spt µ0 ⊂ X, spt µT ⊂ XT

(III.5)

Theorem III.2. The optimal value of the infinite-dimensional problem is equal to the volume of the ROA, i.e.,

p∗ = λ(X0) (III.6)

Proof. From Lemma III.1 λ(spt µ0) ≤ λ(X0) for any feasible µ0.
With the constraint µ0 ≤ λ, we get the inequality µ0 ≤ λ ⇒ µ0(X) = µ0(spt µ0) ≤ λ(spt µ0) ≤ λ(X0), for any
feasible µ0, then p∗ ≤ λ(X0).
However, by definition, λ(X0) is feasible, so p∗ ≤ λ(X0). Therefore, p∗ = λ(X0).

Adding a slack variable µ̂ ∈ M(X), s.t.,

λ ≥ µ0 ≥ 0, µ0 + µ̂0 = λ, µ0 ≥ 0, µ̂0 ≥ 0 (III.7)

Then:

p∗ = sup µ0(X)

s.t. δT ⊗ µT = δ0 ⊗ µ0 + L′µ

µ0 + µ̂0 = λ

µ ≥ 0, µ0 ≥ 0, µT ≥ 0, µ̂0 ≥ 0

spt µ ⊂ [0, T ]×X × U

spt µ0 ⊂ X, spt µT ⊂ XT

spt µ̂0 ⊂ X

(III.8)

It can be shown that the primal problem III.8 it is associated with the dual shown below.

d∗ = inf

∫
X

w(x)dλ(x)

s.t. Lv(t, x, u) ≤ 0, ∀(t, x, u) ∈ [0, T ]×X × U

w(x) ≥ v(0, x) + 1, ∀x ∈ X

v(T, x) ≥ 0, ∀(t, x) ∈ XT

w(x) ≥ 0, ∀x ∈ X

(III.9)

Theorem III.3 (Strong duality in ∞-dim LP problem [2]). There is no duality gap between the primal infinite-
dimensional problem and the dual infinite-dimensional problem, i.e.,

p∗ = d∗ (III.10)

Proof: [2]

Lemma III.4. Let (v, w) be a feasible pair V.1, then v(0, .) ≥ 0 on X0, and w ≥ 1 on X0.

Proof. Given any x0 ∈ X0, there exist u(t) such that x(t) ∈ X, u(t) ∈ U , ∀t ∈ [0, T ] and x(T ) ∈ XT .
Note that

v(T, .) ≥ 0 on XT (III.11)
Lv ≤ 0 on [0, T ]×X × U (III.12)
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and since d
dtv(t, x(t)) =

dv
dt + dv

dx
dx
dt = v̇ +∇v · f = Lv, and obviously

∫ T

0
d
dtv(t, x(t))dt = v(T, x(T )) − v(0, x0),

then we can obtain:

0 ≤ v(T, x(T )) = v(0, x0) +

∫ T

0

d

dt
v(t, x(t))dt

= v(0, x0) +

∫ T

0

Lv(t, x(t), u(t))dt ≤ v(0, x0) ≤ w(x0)− 1

(III.13)

Therefore, w(x0) ≥ 1 and v(0, x0) ≥ 0, on X0.

By Theorem III.2, the primal is related to the integral:

p∗ =

∫
X

IX0
(x)dλ(x) (III.14)

Then, by Theorem III.3, there is no duality gap, i.e., p∗ = d∗, and ∃(vk, wk) ∈ C1([0, T ]×X)×C(X) feasible such
that

p∗ = d∗ = lim
k→∞

∫
X

wk(x)dλ(x) (III.15)

and it can be shown (by the previous Lemma) that

lim
k→∞

∫
X

(wk(x)− IX0
(x)) dλ(x) = 0 (III.16)

concluding that wk →
L1

IX0 .

Theorem III.5 (Convergence of wk to IX0 [2]). Given wk ∈ R2k[x] as an optimal solution to the dua LMI, then
wk ↘ IX0 (converges from above) in L1.
Proof: [2]

It is shown in [2] that the ∞-dim LP problem can be approximated by a series of LMI problems, with vanishing error
as the relaxation order increases.
Given the primal and dual, p∗ and d∗, which approximate the ∞-dim problem, one can see that the following sets
are outer approximations of the ROA:

X0k := {x ∈ X : vk(0, x) ≥ 0} and X̄0k := {x ∈ Xv̄k(0, x) ≥ 0} (III.17)

where w̄k := mini≥k wi and v̄k := mini≥k vi, for polynomials (wk, vk) with degree up to 2k.

Furthermore, X0k ⊃ X̄0k ⊃ X0.

IV. Convergence Analysis

Corollary IV.1 (The sequence of LMI converge monotonically to the ∞-dim LP).

d∗ ≤ d∗k+1 ≤ d∗k and p∗ ≤ p∗k+1 ≤ p∗k (IV.1)

Proof. From Theorem III.5 and relaxation of constraint with k → ∞, we get convergence of dual optima d∗k.
For the primal, weak duality: d∗k ≥ p∗k, and from strong duality III.3: d∗ → d∗ = p∗, then, p∗k ≥ p∗.
Also, the higher the relaxation order, the higher the constraints, so p∗k+1 ≤ p∗k.

Theorem IV.2 (Convergence to ROA). Given (vk, wk) ∈ R2k[t, x]×R2k[x] be a solution to the dual LMI problem.
Then, the sets X0k and X̄0k converge to the ROA X0 from the outside, such that

X0k ⊃ X̄0k ⊃ X0 (IV.2)

lim
k→∞

λ(X0k \X0) = 0 and lim
k→∞

λ(X̄0k \X0) = 0 (IV.3)

Proof. From Lemma III.4 and X̄0k = ∪k
i=1X0i if follows that X0k ⊃ X̄0k ⊃ X0. Then, monotonicity of the sequence

X̄0k is implied.
Also from Lemma III.4, we have wk ≥ IX0

, and then since wk ≥ vk(0, .) + 1 ⇒ wk ≥ IX0k
≥ IX̄0k

≥ IX0
.

From Theorem III.5, wk → IX0
, then

λ(X0) =

∫
X

IX0
dλ =︸︷︷︸

III.5

lim
k→∞

∫
X

wkdλ ≥ lim
k→∞

∫
X

IX0k
dλ = lim

k→∞
λ(X0k) ≥ lim

k→∞
λ(X̄0k) (IV.4)

But X0 ⊂ X̄0k ⊂ X0k, then λ(X0) ≤ λ(X̄0k) ≤ λ(X0k).
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V. Polynomial Optimization Problem

Utilizing the Weierstrass theorem, [3], one can approximate continuous functions with polynomials in a compact
set. Furthermore, the domain sets are defined as semialgebraic Quadratic modules. The problem then yields a
Polynomial Optimization problem (POP), which can be implemented and solved with a variety of computational
tools, for example, with a the Mosek [1] optimization solver, as later will be shown in numerical examples.
The POP is formulated from the dual below.

inf

∫
X

w(x)dλ(x)

s.t. Lv(t, x, u) ≤ 0, ∀(t, x, u) ∈ [0, T ]×X × U

w(x) ≥ v(0, x) + 1, ∀x ∈ X

v(t, x) ≥ 0, ∀(t, x) ∈ [0, T ]×XT

w(x) ≥ 0, ∀x ∈ X

(V.1)

Where, the constraints are written as nonnegativity certificates, which are related to sums of squares and quadratic
modules.

w(x)− v(0, x)− 1 ≥ 0, ∀x ∈ X

v(t, x) ≥ 0, ∀(t, x) ∈ [0, T ]×XT

w(x) ≥ 0, ∀x ∈ X

(V.2)

It is imperative to design suitable semialgebraic sets, then, given X = [a, b], in order to find a semialgebraic domain
such that

K = {(t, x) ∈ R2 : g1(t, x) ≥ 0 ∧ g2(t, x) ≥ 0} = [0, T ]×X (V.3)

a simple concave quadratic polynomial is a possible representation, obtaining:

K = {(t, x) ∈ R2 : −t(t− T ) ≥ 0 ∧ −(x− a)(x− b) ≥ 0} = [0, T ]× [a, b] (V.4)

Similarly, for the remaining domains:

X = {x ∈ R : −(x− a)(x− b) ≥ 0} (V.5)

KT = {(t, x) ∈ R2 : −t(t− T ) ≥ 0 ∧ −(x− α)(x− β) ≥ 0} = [0, T ]×XT (V.6)

VI. Numerical Simulations

All implementations are available at https://github.com/pedroblossbraga/ROA_computation/tree/main.

A. Univariate Cubic Dynamics

Consider the following simple uncontrolled univariate cubic example with dynamics:

ẋ = x(x− 0.5)(x+ 0.5) (VI.1)

FIG. 1: ROA approximations for d ∈ {4, 6, 16, 32}.

https://github.com/pedroblossbraga/ROA_computation/tree/main
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Additionally, taking X = [−1, 1], T = 1, XT = [−0.24, 0.24], the following numerical results are obtained, increasing
the velocity of the system with a factor of 10, i.e., f̃ = 10f :

FIG. 2: ROA approximations for d ∈ {4, 6, 16, 32}.

Note that w(x) evaluated at the stable equilibrium point x = 0 still satisfies the constraint w(x) ≥ 1. Furthermore,
the ROA appears to be located in the interval [−0.5, 0.5], with a Gibbs effect in the discontinuity neighborhood, in
{−0.5, 0.5}.
And, by reversing the ODE in time, with an initial condition of x(0) = 0.24, it is possible to verify if the value
matches the observed ROA interval of [−0.5, 0.5]. As the system is symmetric, it is not necessary to verify for the
left bound.

FIG. 3: Reversed ODE solution

The ODE solution converges to the value of 0.5.

VII. References

[1] ApS, M. Mosek optimizer api for julia.
[2] Henrion, D., and Korda, M. Convex computation of the region of attraction of polynomial control systems. IEEE

Transactions on Automatic Control 59 (08 2012).
[3] Hirsch, M. W. Differential topology, vol. 33. Springer Science & Business Media, 2012.
[4] O’Meara, O. T. Introduction to quadratic forms, vol. 117. Springer, 2013.
[5] Putinar, M. Positive polynomials on compact semi-algebraic sets. Indiana University Mathematics Journal 42, 3 (1993),

969–984.


	Introduction
	Assumptions

	Occupation measures
	ROA via Optimization
	Convergence Analysis
	Polynomial Optimization Problem
	Numerical Simulations
	Univariate Cubic Dynamics

	References
	References

