Friedrich-Alexander Universität Erlangen-Nürnberg Department of Mathematics and Data Science

EN ENEDRICH-ALEXANDER
UNIVERSITÄT
ERLANGEN-NÜRNBERG

Pedro Blöss Braga pedro.bloess@fau.de M.Sc. Computational and Applied Mathematics candidate

Convex Optimization for Dynamical Systems Region of Attraction Computation via Polynomial Optimization

Region of Attraction (ROA) estimation problems yield interesting optimization approaches when considering polynomial dynamics. In this study, a method presented in [\[2\]](#page-6-0) is shown, providing an outer approximation to the ROA, solving a Polynomial Optimization problem, induced by occupation measures, approximating an initial infinite dimensional problem with a hierarchy of finite dimensional linear matrix inequalities, with convergence for an arbitrarily large polynomial degree.

I. Introduction

The problem relies on computing the Region of Attraction (ROA) of a target set, on a nonlinear dynamical system. The domain sets are X, U, X_T , respectively for the trajectories, control, and terminal state.

$$
\dot{x}(t) = f(t, x(t), u(t)) \quad t \in [0, T] \tag{1.1}
$$

where it is considered that each entry is polynomial, i.e., $f_i \in \mathbb{R}[t, x, u], i \in \mathbb{Z}_{[1,n]}.$ The set of all admissible trajectories starting from x_0 is given by:

$$
\mathcal{X}(x_0) := \{x(.) : \exists u(.) \in \mathcal{U} \text{ s.t. } \dot{x}(t) = f(t, x(t), u(t)) \text{ a.e., } x(0) = x_0, x(t) \in X, x(T) \in X_T, \forall t \in [0, T] \} \tag{1.2}
$$

where U denotes the set of all control functions, and $x(.)$ is absolutely continuous. Also, a.e. stands for "almost everywhere" in a Lebesgue measure or a weak sense.

The defined sets X, U, X_T form semialgebraic constraints that restrict state and control input.

$$
x(t) \in X := \{ x \in \mathbb{R}^n : g_i^X(x) \ge 0, i \in \mathbb{Z}_{[1,n_X]}\}, \quad t \in [0, T]
$$
\n(1.3)

$$
u(t) \in U := \{ u \in \mathbb{R}^m : g_i^U(u) \ge 0, i \in \mathbb{Z}_{[1,n_U]}\}, \quad t \in [0, T]
$$
\n(1.4)

where $g_i^X\in\R[x], g_i^U\in\R[x]$, and the terminal state $x(T)$ is constrained to lie in the basic semialgebraic set

$$
X_T := \{ x \in \mathbb{R}^n : g_i^{X_T}(x) \ge 0, i \in \mathbb{Z}_{[1,n_T]} \} \subset X, \quad g_i^{X_T} \in \mathbb{R}[x]
$$
\n(1.5)

Definition I.1 (Region of Attraction (ROA) [\[2\]](#page-6-0)). The Region of Attraction (ROA) of a dynamical system is the set of all initial states that can be directed to a target set, with an admissible control, while remaining in the state-constraint set. The ROA is denoted by

$$
X_0 = \{x_0 \in X : \mathcal{X}(x_0) \neq \emptyset\}
$$
\n
$$
(1.6)
$$

A. Assumptions

- 1. Assumption 1: X , U , and X_T are compact. Therefore, the sets are also bounded.
- 2. Assumption 2: The control system satisfies $\lambda(X_0)=\lambda(\bar X_0).$ Thus, the volume of the relaxed region has the same volume as the ROA measure.
- 3. Assumption 3: Archimedian semialgebraic sets. Allows us to use quadratic modules (weighted SOS).

Definition I.2 (Quadratic Module [\[4\]](#page-6-1)). The quadratic module generated by the polynomials g_1, \ldots, g_m is the set

$$
Q(g_1,\ldots,g_m):=\left\{\sigma_0+\sum_{i=1}^m g_i\sigma_i:\sigma_0,\ldots,\sigma_m\in\Sigma[x]\right\}
$$
 (1.7)

Definition I.3 (Archimedian semialgebraic sets). The Quadratic module $Q(g_1, \ldots, g_m)$ is said to be Archimedean if $\exists N \in \mathbb{N} : N - (x_1^2 + \ldots + x_n^2) \in Q(g_1, \ldots, g_m).$

Assumptions 1 and 3 are sufficient conditions to apply Putinar's theorem [\[5\]](#page-6-2), and then a Quadratic module can be a representation of the semialgebraic sets.

Theorem 1.4 (Putinar [\[5\]](#page-6-2)). Suppose the polynomials g_1, \ldots, g_m are such that $Q(g_1, \ldots, g_m)$ is Archimedean. If $f \in \mathbb{R}[x]$ is positive on the set K, then $f \in Q(g_1, \ldots, g_m)$.

II. Occupation measures

[\[2\]](#page-6-0) shows that it is possible to compute the ROA by solving a convex linear program (LP), with infinite dimensionality. However, the infinite dimensional problem can be converted to an equivalent optimization problem, with finite dimensionality, which is more suitable for numerical simulation.

Definition II.1 (Occupation measure). Given an initial condition x_0 and admissible $x(.|x_0) \in X_0$, with $u(.|x_0) \in U$, the occupation measure $\mu(.|x_0)$ is defined by

$$
\mu(A \times B \times C | x_0) = \int_0^T \mathbb{I}_{A \times B \times C}(t, x(t | x_0), u(t | x_0)) dt, \quad \forall A \times B \times C \subset [0, T] \times X \times U \tag{II.1}
$$

where $\mu(A \times B \times C|x_0)$ quantifies the amount of time of $A \subset [0, T]$ spent with the trajectory state and control $(x,[x_0), u(.|x_0)) \in B \times C \subset X \times U$.

For any measurable function $g(t, x, u)$ we have the property

$$
\int_0^T g(t, x(t|x_0), u(t|x_0))dt = \int_{[0,T] \times X \times U} g(t, x, u)d\mu(t, x, u|x_0)
$$
\n(II.2)

which relates the measure $\mu(.|x_0)$ to the trajectory state and control in the given time.

Furthermore, a particularly relevant relation between a measure μ and the function f is the Liouville equation, with the derivative of the measure in a weak or distributional sense:

$$
\partial_t \mu + \text{div}_x(f\mu) = 0, \quad \mu \in M([0, T] \times X)
$$
\n(II.3)

And with a test function, initially with flexible regularity $C_0^\infty([0,T]\times X)$, we integrate with time and space. By integrating by parts and shifting the derivative to the test function with the first term, and applying the divergence theorem with the second term:

$$
\int_0^T \int_X (\partial_t \mu + \text{div}_x(f\mu)) \nu dx dt = \int_0^T \int_X \partial_t \mu \cdot \nu dx dt + \int_0^T \int_X \text{div } (f\mu) \cdot \nu dx dt \tag{II.4}
$$

$$
= -\int_0^T \int_X \mu \cdot \partial_t v dx dt - \int_0^T \int_X f \mu \cdot \nabla v dx dt = 0 \tag{II.5}
$$

$$
\int_{0}^{T} \int_{X} (\partial_{t} v + \nabla v \cdot f) \mu dx dt = 0
$$
 (II.6)

$$
\Rightarrow \int_0^T \int_X \left(\partial_t v + \nabla v \cdot f \right) d\mu(t, x) = 0, \quad \forall v \in C_0^{\infty}([0, T] \times X)
$$
 (II.7)

We then reformulate [II.3](#page-1-0) via the Linear Operator $\mathcal{L}:C^1([0,T]\times X)\to C([0,T]\times X\times U)$ with

$$
v \mapsto Lv := \frac{\partial v}{\partial t} + \nabla v \cdot f \tag{II.8}
$$

which has an adjoint $\mathcal{L}':C([0,T]\times X\times U)'\to C_1([0,T]\times X)',$ with

$$
\langle \mathcal{L}'\nu, v \rangle := \langle \nu, \mathcal{L}v \rangle = \int_{[0,T] \times X \times U} \mathcal{L}v(t, x, u) d\nu(t, x, u)
$$

\n
$$
\forall \nu \in M([0,T] \times X \times U) = C([0,T] \times X \times U)', v \in C^1([0,T] \times X)
$$
\n(II.9)

Often the adjoint is expressed with $\mathcal{L}'\nu=-\partial_t\nu-\nabla\cdot f\nu$. Note that the liouville equation [II.3](#page-1-0) is denoted with the given adjoint.

Given a test function $v \in C^1([0,T] \times X)$,

$$
v(T, x(T|x_0)) = v(0, x_0) + \int_0^T \frac{d}{dt} v(t, x(t|x_0)) dt = v(0, x_0) + \int_0^T \mathcal{L}v(t, x(t|x_0), u(t|x_0)) dt
$$

$$
= v(0, x_0) + \int_{[0, T] \times X \times U} \mathcal{L}v(t, x, u) d\mu(t, x, u|x_0) = v(0, x_0) + \langle \mathcal{L}'\mu(.|x_0), v \rangle
$$

$$
\Rightarrow v(T, x(T|x_0)) = v(0, x_0) + \langle \mathcal{L}'\mu(.|x_0), v \rangle
$$
 (II.10)

The average occupation measure μ quantifies the average time spent with the given control and state. By integrating [II.10](#page-2-0) w.r.t μ_0 , we obtain

$$
\int_{X_T} v(T, x(T|x_0))d\mu_T(x) = \int_X v(0, x_0)d\mu_0(x) + \int_{[0, T] \times X \times U} \mathcal{L}v(t, x, u)d\mu(t, x, u)
$$
\n(II.11)

$$
\langle \mu_T, v(T,.) \rangle = \langle \mu_0, v(0,.) \rangle + \langle \mu, \mathcal{L}v \rangle \tag{II.12}
$$

which relate the nonnegative measures $\mu \geq 0, \mu_0 \geq 0, \mu_T \geq 0$. We can rewrite [II.12](#page-2-1) with the Dirac δ_t measure as $\langle \mu_0, v(0,.) \rangle = \langle \delta_0 \otimes \mu_0, v \rangle$, obtaining

$$
\langle \delta_T \otimes \mu_T, v \rangle = \langle \delta_0 \otimes \mu_0, v \rangle + \underbrace{\langle \mu, \mathcal{L}v \rangle}_{\langle \mathcal{L}'\mu, v \rangle} \quad \forall v \in C^1([0, T] \times X)
$$
\n(II.13)

And finally, we obtain the linear operator equation:

$$
\delta_T \otimes \mu_T = \delta_0 \otimes \mu_0 + \mathcal{L}'\mu \tag{II.14}
$$

Relaxation can be obtained by assuming suitable changes:

$$
\rightarrow \dot{x}(t) \in f(t, x(t), U) \tag{II.15}
$$

$$
\rightarrow \dot{x}(t) \in \text{conv}f(t, x(t), U) \tag{II.16}
$$

which can be shown to satisfy Liouville's equation [II.14.](#page-2-2)

Then, the set of admissible trajectories and the ROA are defined with

$$
\bar{\mathcal{X}}(x_0) := \{x(.) : \exists u(.) \in U \text{ s.t. } \dot{x}(t) \in \text{conv}f(t, x(t), U) \text{ a.e., } x(0) = x_0 \in x(t) \in X, x(T) \in X_T, \forall t \in [0, T] \}
$$
\n(II.17)

$$
\bar{X}_0 = \{x_0 \in X : \bar{\mathcal{X}}(x_0) \neq \emptyset\}
$$
\n(11.18)

III. ROA via Optimization

Computing the ROA then can be determined with the optimization problem below

$$
q^* = \sup \quad \lambda(\text{spt } \mu_0)
$$

s.t. $\delta_T \otimes \mu_T = \delta_0 \otimes \mu_0 + \mathcal{L}'\mu$
 $\mu \ge 0, \mu_0 \ge 0, \mu_T \ge 0$
spt $\mu \subset [0, T] \times X \times U$
spt $\mu_0 \subset X, \text{spt } \mu_T \subset X_T$ (III.1)

Lemma III.1 (ROA computation via [III.1\)](#page-2-3). It can be shown that the volume in [III.1](#page-2-3) equals to the volume of the ROA, i.e., $q^* = \lambda(X_0)$.

Proof. By definition, for $x_0 \in X_0$, there is an admissible trajectory in $\mathcal{X}(x_0)$, thus, for μ_0 with spt $\mu_0 \subset X_0$, there exist μ , μ_T satisfying the constraints.

With Assumption 2, $\lambda(X_0)=\lambda(\bar X_0)$, then $q^*\geq \lambda(X_0)=\lambda(\bar X_0).$

Supposing by contradition (μ_0,μ,μ_T) satisfy the constraints and $\lambda($ spt $\mu_0\setminus\bar X_0)>0.$ However, no trajectory from $\textsf{Spt} \ \mu_0 \setminus \bar{\bar{X}}_0$ can be admissible, then $\lambda(\textsf{spt} \ \mu_0 \setminus \bar{X}_0) = 0 \Rightarrow \lambda(\textsf{spt} \ \mu_0) \leq \lambda(\bar{X}_0).$ Then, $q^* \leq \lambda(\bar{X}_0) = \lambda(X_0).$ \Box

 \Box

It is possible to reformulate [III.1,](#page-2-3) by using that for any feasible μ_0 :

$$
\lambda(\text{spt }\mu_0) \le \lambda(X_0) \tag{III.2}
$$

$$
\mu_0 \le \lambda \Rightarrow \mu_0(X) = \mu_0(\text{spt } \mu_0) \le \lambda(\text{spt } \mu_0) \le \lambda(X_0)
$$
\n(III.3)

$$
\therefore \mu_0(X) \le \lambda(X_0) \tag{III.4}
$$

Also, by definition $\mu_0(X) \geq \lambda(X_0)$. Thus: $p^* := \mu_0(X) = \lambda(X_0)$, and we obtain:

$$
p^* = \sup \mu_0(X)
$$

s.t. $\delta_T \otimes \mu_T = \delta_0 \otimes \mu_0 + \mathcal{L}'\mu$
 $\mu \ge 0, \quad \lambda \ge \mu_0 \ge 0, \quad \mu_T \ge 0$
spt $\mu \subset [0, T] \times X \times U$
spt $\mu_0 \subset X$, spt $\mu_T \subset X_T$ (III.5)

Theorem III.2. The optimal value of the infinite-dimensional problem is equal to the volume of the ROA, i.e.,

$$
p^* = \lambda(X_0) \tag{III.6}
$$

Proof. From Lemma [III.1](#page-2-4) $\lambda(\text{spt } \mu_0) \leq \lambda(X_0)$ for any feasible μ_0 .

With the constraint $\mu_0 \leq \lambda$, we get the inequality $\mu_0 \leq \lambda \Rightarrow \mu_0(X) = \mu_0(\text{spt } \mu_0) \leq \lambda(\text{spt } \mu_0) \leq \lambda(X_0)$, for any feasible μ_0 , then $p^* \leq \lambda(X_0)$.

However, by definition, $\lambda(X_0)$ is feasible, so $p^* \leq \lambda(X_0)$. Therefore, $p^* = \lambda(X_0)$.

Adding a slack variable $\hat{\mu} \in M(X)$, s.t.,

$$
\lambda \ge \mu_0 \ge 0, \quad \mu_0 + \hat{\mu}_0 = \lambda, \mu_0 \ge 0, \quad \hat{\mu}_0 \ge 0 \tag{III.7}
$$

Then:

$$
p^* = \sup \mu_0(X)
$$

s.t. $\delta_T \otimes \mu_T = \delta_0 \otimes \mu_0 + \mathcal{L}'\mu$
 $\mu_0 + \hat{\mu}_0 = \lambda$
 $\mu \ge 0, \mu_0 \ge 0, \mu_T \ge 0, \hat{\mu}_0 \ge 0$
 $\text{spt } \mu \subset [0, T] \times X \times U$
 $\text{spt } \mu_0 \subset X, \text{spt } \mu_T \subset X_T$
 $\text{spt } \hat{\mu}_0 \subset X$

It can be shown that the primal problem [III.8](#page-3-0) it is associated with the dual shown below.

$$
d^* = \inf \qquad \int_X w(x) d\lambda(x)
$$

s.t. $\mathcal{L}v(t, x, u) \le 0, \qquad \forall (t, x, u) \in [0, T] \times X \times U$

$$
w(x) \ge v(0, x) + 1, \qquad \forall x \in X
$$

$$
v(T, x) \ge 0, \qquad \forall (t, x) \in X_T
$$

$$
w(x) \ge 0, \qquad \forall x \in X
$$

(III.9)

Theorem III.3 (Strong duality in ∞ -dim LP problem [\[2\]](#page-6-0)). There is no duality gap between the primal infinitedimensional problem and the dual infinite-dimensional problem, i.e.,

$$
p^* = d^* \tag{III.10}
$$

Proof: [\[2\]](#page-6-0)

Lemma III.4. Let (v, w) be a feasible pair [V.1,](#page-5-0) then $v(0,.) \ge 0$ on X_0 , and $w \ge 1$ on X_0 .

Proof. Given any $x_0 \in X_0$, there exist $u(t)$ such that $x(t) \in X$, $u(t) \in U$, $\forall t \in [0, T]$ and $x(T) \in X_T$. Note that

$$
v(T,.) \ge 0 \text{ on } X_T \tag{III.11}
$$

$$
\mathcal{L}v \le 0 \text{ on } [0, T] \times X \times U \tag{III.12}
$$

 \Box

and since $\frac{d}{dt}v(t,x(t)) = \frac{dv}{dt} + \frac{dv}{dx}\frac{dx}{dt} = \dot{v} + \nabla v \cdot f = \mathcal{L}v$, and obviously $\int_0^T \frac{d}{dt}v(t,x(t))dt = v(T,x(T)) - v(0,x_0)$, then we can obtain:

$$
0 \le v(T, x(T)) = v(0, x_0) + \int_0^T \frac{d}{dt} v(t, x(t)) dt
$$

= $v(0, x_0) + \int_0^T \mathcal{L}v(t, x(t), u(t)) dt \le v(0, x_0) \le w(x_0) - 1$ (III.13)

Therefore, $w(x_0) > 1$ and $v(0, x_0) > 0$, on X_0 .

By Theorem [III.2,](#page-3-1) the primal is related to the integral:

$$
p^* = \int_X \mathbb{I}_{X_0}(x) d\lambda(x) \tag{III.14}
$$

Then, by Theorem [III.3,](#page-3-2) there is no duality gap, i.e., $p^*=d^*$, and $\exists (v_k,w_k)\in C^1([0,T]\times X)\times C(X)$ feasible such that

$$
p^* = d^* = \lim_{k \to \infty} \int_X w_k(x) d\lambda(x)
$$
 (III.15)

and it can be shown (by the previous Lemma) that

$$
\lim_{k \to \infty} \int_X \left(w_k(x) - \mathbb{I}_{X_0}(x) \right) d\lambda(x) = 0 \tag{III.16}
$$

concluding that $w_k \underset{L_1}{\rightarrow} \mathbb{I}_{X_0}$.

Theorem III.5 (Convergence of w_k to \mathbb{I}_{X_0} [\[2\]](#page-6-0)). Given $w_k \in \mathbb{R}_{2k}[x]$ as an optimal solution to the dua LMI, then $w_k \searrow {\mathbb{I}}_{X_0}$ (converges from above) in $L^1.$ Proof: [\[2\]](#page-6-0)

It is shown in [\[2\]](#page-6-0) that the ∞-dim LP problem can be approximated by a series of LMI problems, with vanishing error as the relaxation order increases.

Given the primal and dual, p^* and d^* , which approximate the ∞ -dim problem, one can see that the following sets are outer approximations of the ROA:

$$
X_{0k} := \{ x \in X : v_k(0, x) \ge 0 \} \quad \text{and} \quad \bar{X}_{0k} := \{ x \in X_{\bar{v}_k}(0, x) \ge 0 \}
$$
(III.17)

where $\bar w_k:=\min_{i\geq k}w_i$ and $\bar v_k:=\min_{i\geq k}v_i$, for polynomials (w_k,v_k) with degree up to $2k.$

Furthermore, $X_{0k}\supset \bar{X}_{0k}\supset X_0$.

IV. Convergence Analysis

Corollary IV.1 (The sequence of LMI converge monotonically to the ∞ -dim LP).

$$
d^* \le d_{k+1}^* \le d_k^* \quad \text{and} \quad p^* \le p_{k+1}^* \le p_k^* \tag{IV.1}
$$

Proof. From Theorem [III.5](#page-4-0) and relaxation of constraint with $k \to \infty$, we get convergence of dual optima d_k^* . For the primal, weak duality: $d_k^* \geq p_k^*$, and from strong duality [III.3:](#page-3-2) $d^* \to d^* = p^*$, then, $p_k^* \geq p^*.$ Also, the higher the relaxation order, the higher the constraints, so $p_{k+1}^* \leq p_k^* .$ \Box

Theorem IV.2 (Convergence to ROA). Given $(v_k, w_k) \in \mathbb{R}_{2k}[t, x] \times \mathbb{R}_{2k}[x]$ be a solution to the dual LMI problem. Then, the sets \hat{X}_{0k} and \bar{X}_{0k} converge to the ROA X_0 from the outside, such that

$$
X_{0k} \supset \bar{X}_{0k} \supset X_0 \tag{IV.2}
$$

$$
\lim_{k \to \infty} \lambda(X_{0k} \setminus X_0) = 0 \text{ and } \lim_{k \to \infty} \lambda(\bar{X}_{0k} \setminus X_0) = 0 \tag{IV.3}
$$

 P roof. From Lemma [III.4](#page-3-3) and $\bar{X}_{0k}=\cup_{i=1}^k X_{0i}$ if follows that $X_{0k}\supset \bar{X}_{0k}\supset X_0.$ Then, monotonicity of the sequence \bar{X}_{0k} is implied.

Also from Lemma [III.4,](#page-3-3) we have $w_k \geq \mathbb{I}_{X_0}$, and then since $w_k \geq v_k(0,.) + 1 \Rightarrow w_k \geq \mathbb{I}_{X_{0k}} \geq \mathbb{I}_{X_0} \geq \mathbb{I}_{X_0}$ From Theorem [III.5,](#page-4-0) $w_k \to \mathbb{I}_{X_0}$, then

$$
\lambda(X_0) = \int_X \mathbb{I}_{X_0} d\lambda \underbrace{=}_{\mathsf{III.5}} \lim_{k \to \infty} \int_X w_k d\lambda \ge \lim_{k \to \infty} \int_X \mathbb{I}_{X_{0k}} d\lambda = \lim_{k \to \infty} \lambda(X_{0k}) \ge \lim_{k \to \infty} \lambda(\bar{X}_{0k})
$$
 (IV.4)

But $X_0 \subset \overline{X}_{0k} \subset X_{0k}$, then $\lambda(X_0) \leq \lambda(\overline{X}_{0k}) \leq \lambda(X_{0k})$.

 \Box

V. Polynomial Optimization Problem

Utilizing the Weierstrass theorem, [\[3\]](#page-6-3), one can approximate continuous functions with polynomials in a compact set. Furthermore, the domain sets are defined as semialgebraic Quadratic modules. The problem then yields a Polynomial Optimization problem (POP), which can be implemented and solved with a variety of computational tools, for example, with a the Mosek [\[1\]](#page-6-4) optimization solver, as later will be shown in numerical examples. The POP is formulated from the dual below.

$$
\inf \int_{X} w(x) d\lambda(x)
$$

s.t. $\mathcal{L}v(t, x, u) \le 0$, $\forall (t, x, u) \in [0, T] \times X \times U$
 $w(x) \ge v(0, x) + 1$, $\forall x \in X$
 $v(t, x) \ge 0$, $\forall (t, x) \in [0, T] \times X_T$
 $w(x) \ge 0$, $\forall x \in X$ (V.1)

Where, the constraints are written as nonnegativity certificates, which are related to sums of squares and quadratic modules.

$$
w(x) - v(0, x) - 1 \ge 0, \quad \forall x \in X
$$

$$
v(t, x) \ge 0, \quad \forall (t, x) \in [0, T] \times X_T
$$

$$
w(x) \ge 0, \quad \forall x \in X
$$
 (V.2)

It is imperative to design suitable semialgebraic sets, then, given $X = [a, b]$, in order to find a semialgebraic domain such that

$$
K = \{(t, x) \in \mathbb{R}^2 : g_1(t, x) \ge 0 \land g_2(t, x) \ge 0\} = [0, T] \times X
$$
 (V.3)

a simple concave quadratic polynomial is a possible representation, obtaining:

$$
K = \{(t, x) \in \mathbb{R}^2 : -t(t - T) \ge 0 \land -(x - a)(x - b) \ge 0\} = [0, T] \times [a, b]
$$
\n(V.4)

Similarly, for the remaining domains:

$$
X = \{x \in \mathbb{R} : -(x - a)(x - b) \ge 0\}
$$
 (V.5)

$$
K_T = \{(t, x) \in \mathbb{R}^2 : -t(t - T) \ge 0 \land -(x - \alpha)(x - \beta) \ge 0\} = [0, T] \times X_T
$$
\n(V.6)

VI. Numerical Simulations

All implementations are available at https://github.com/pedroblossbraga/ROA_computation/tree/main.

A. Univariate Cubic Dynamics

Consider the following simple uncontrolled univariate cubic example with dynamics:

$$
\dot{x} = x(x - 0.5)(x + 0.5) \tag{V1.1}
$$

FIG. 1: ROA approximations for $d \in \{4, 6, 16, 32\}$.

Additionally, taking $X = [-1, 1]$, $T = 1$, $X_T = [-0.24, 0.24]$, the following numerical results are obtained, increasing the velocity of the system with a factor of 10, i.e., $\tilde{f} = 10f$:

FIG. 2: ROA approximations for $d \in \{4, 6, 16, 32\}$.

Note that $w(x)$ evaluated at the stable equilibrium point $x = 0$ still satisfies the constraint $w(x) \ge 1$. Furthermore, the ROA appears to be located in the interval $[-0.5, 0.5]$, with a Gibbs effect in the discontinuity neighborhood, in $\{-0.5, 0.5\}.$

And, by reversing the ODE in time, with an initial condition of $x(0) = 0.24$, it is possible to verify if the value matches the observed ROA interval of [−0.5, 0.5]. As the system is symmetric, it is not necessary to verify for the left bound.

FIG. 3: Reversed ODE solution

The ODE solution converges to the value of 0.5.

VII. References

[1] ApS, M. Mosek optimizer api for julia.

- [3] HIRSCH, M. W. Differential topology, vol. 33. Springer Science & Business Media, 2012.
- [4] O'MEARA, O. T. Introduction to quadratic forms, vol. 117. Springer, 2013.

^[2] HENRION, D., AND KORDA, M. Convex computation of the region of attraction of polynomial control systems. IEEE Transactions on Automatic Control 59 (08 2012).

^[5] PUTINAR, M. Positive polynomials on compact semi-algebraic sets. Indiana University Mathematics Journal 42, 3 (1993), 969–984.